

VXC S288-S1010

Refrigerant condensers

Engineering data

REMARK: Do not use for construction. Refer to factory certified dimensions & weights. This page includes data current at time of publication, which should be reconfirmed at the time of purchase. In the interest of product improvement, specifications, weights and dimensions are subject to change without notice.

General notes

- 1. Standard refrigerant connection sizes are ND 100 BSP MPT inlet and outlet (for models VXC 14 through 28 refrigerant connection sizes are ND 80 BSP MPT), consult your local BAC representative for size and location. Other connection sizes are available on special order. Refrigerant connections are standard bevelled for welding.
- 2. Make up, overflow, suction, drain connection and access door can be provided on side opposite to that shown; consult your BAC representative.
- 3. Unit height is indicative, for precise value refer to certified print.
- 4. Shipping/operating weights indicated are for units without accessories such as sound attenuators, discharge hoods, etc. Consult factory certified prints to obtain weight additions and the heaviest section to be lifted.
- 5. The drawing units with only one spray pump show the standard right hand arrangement has the air inlet side on the right when facing the connection end. Left hand can be furnished by special order.
- 6. Coil, overflow, make-up and spray water connections are always located on the same nd of the unit. For double pump units an additional overflow connection will be installed on the other end of the unit.
- 7. On model VXC 14 through VXC 135 access doors are located at the opposite of the air inlet side, ensure sufficient space for entry when positionning these units.
- 8. For indoor applications of evaporative condensers, the room may be used as a plenum with ductwork attached to the discharge only. If inlet ductwork is required, an enclosed fan section must be specified; consult your BAC representative for details.
- 9. Fan kW is at 0 Pa ESP. To operate against external static pressure up to 125 Pa, increase each fan motor one size.
- 10. Refrigerant charge listed is R717 operating change. To determine operating charge of R 22 refrigerant, multiply by: 1,93. For R134A, multiply by: 1.98.
- 11. For dry operation, standard motors must be increased one size to avoid motor overloading. Extended surface coils are available to vastly increase dry capacity without motor size increase. Consult your Bac Representative for selection and pricing.
- 12. Models VXC 357-454, VXC 562-380, VXC 495-516 and VXC 725-804 have only 1 coil casing section and one or two fan motors. Fan cycling results in only on-off operation. On these units all fans need to operate simultaneously.
- 13. Models VXC 714-907, VXC 1124-1360, VXC 990-1032 and VXC 1430-1608 have 2 coils casing sections and one or two fan motors per coil casing section. Fan cycling results in only-off operation. On these units all

fans need to operate simultaneously per coil casing section.

Last update: 07/05/2024

VXC S288-S1010

 $1.\ Refrigerant\ in\ ND100;\ 2.\ Refrigerant\ out\ ND100;\ Make\ up\ ND50;\ 4.\ Overflow\ ND80;\ 5.\ Drain\ ND50;\ 6.\ Access.$

Model	Weights (kg)			Dimensions (mm)			Air Flow	Fan Motor		Pump	R717
	Oper. Weight	Ship. Weight(kg	Heaviest Section	L	W	Н	(m³/s)	(kW)	Flow (I/s)	Motor (kW)	charge (kg)
VXC	(kg) 7600	5525	(kg) 3850	3550	2397	4248	22.8	(1x)	25.2	(1x)	164.0
S288		**						18.5		2.2	
VXC	7630	5555	3850	3550	2397	4248	24.2	(1x)	25.2	(1x)	164.0
S300								22.0		2.2	
VXC	7705	5630	3850	3550	2397	4248	26.7	(1x)	25.2	(1x)	164.0
S328								30.0		2.2	
VXC	8320	6180	4470	3550	2397	4483	26.2	(1x)	25.2	(1x)	196.0
S350								30.0		2.2	
VXC	10225	7170	4715	5385	2397	4013	36.6	(1x)	38.5	(1x)	198.0
S403								30.0		4.0	
VXC	10285	7230	4715	5385	2397	4013	38.9	(1x)	38.5	(1x)	198.0
S429								37.0		4.0	
VXC	11270	8125	5710	5385	2397	4248	34.9	(1x)	38.5	(1x)	246.0
S455								30.0		4.0	
VXC	11320	8175	5710	5385	2397	4248	37.5	(1x)	38.5	(1x)	246.0
S482								37.0		4.0	
VXC	12500	9260	6690	5385	2397	4483	36.6	(1x)	38.5	(1x)	294.0
S504								37.0		4.0	
VXC	15120	10880	3840	7226	2397	4248	45.6	(2x)	50.4	(2x)	328.0
S576								18.5		2.2	
VXC	15220	10980	3840	7226	2397	4248	48.4	(2x)	50.4	(2x)	328.0
S600								22.0		2.2	
VXC	15400	11100	3840	7226	2397	4248	53.4	(2x)	50.4	(2x)	328.0
S656								30.0		2.2	<u> </u>
VXC	16655	12355	4470	7226	2397	4483	52.4	(2x)	50.4	(2x)	392.0
S700				10000				30.0		2.2	
VXC	20555	14415	5120	10903	2397	4013	73.2	(2x)	77.0	(2x)	396.0
S806		4404=	-400	40000	200=	1010		30.0		4.0	
VXC	20755	14615	5120	10903	2397	4013	77.8	(2x)	77.0	(2x)	396.0
S858	22570	46426	E740	40003	2207	4240	60.0	37.0	77.0	4.0	402.0
VXC	22570	16420	5710	10903	2397	4248	69.8	(2x)	77.0	(2x)	492.0
S910 VXC	22770	4CEEC	E740	40003	2207	4240	75.0	30.0	77.0	4.0	402.0
S964	22770	16550	5710	10903	2397	4248	75.0	(2x)	77.0	(2x) 4.0	492.0
VXC	25025	10505	6690	10002	2207	4402	72.2	37.0	77.0		E00 V
S1010	25035	18505	0090	10903	2397	4483	73.2	(2x) 37.0	77.0	(2x) 4.0	588.0
31010					1			37.0	1	4.0	1